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Abstract—Multi-protocol label switching (MPLS) is supported
by OpenFlow version 1.2 or higher and widely used in software
defined networking (SDN) to achieve higher performance and
flexibility. Due to the shortage of the ternary content addressable
memory (TCAM), the number of forwarding entries installed in
a switch needs to be bounded (node path-degree constraints).
Besides, the maximum concurrent flow problem, which asks to
maximize the minimum fraction of the flow of a commodity
to its demand, is widely studied because of a wide range of
applications. In this paper, we address the maximum concurrent
flow problem while ensuring the flow routed for a commodity
does not exceed its demand (demand constraints) and the node
path-degree constraints are imposed, termed the bounded path-
degree maximum concurrent flow (BPMCF) problem. We first
show the BPMCF problem is NP-hard and intractable to devise
any approximation algorithm. Then, we propose an algorithm
for the BPMCF problem. Finally, we evaluate the performance
of the proposed algorithm through computer simulations and
experiments on Global Environment for Network Innovations
(GENI) testbed using the real-life traces collected from SNDlib.

I. INTRODUCTION

Recently, the software defined networking (SDN) and Open-
Flow have received considerable attention in the networking
research community [1]. Unlike traditional networks, SDN
separates the control plane from the data plane, and thus,
the network operator can manage packet forwarding using
one or several centralized controllers to gain better network
utilization. For instance, Google has built a SDN with Open-
Flow routers to interconnect its data centers (G-Scale) and
expects that there is an improvement of 20-30% in the network
utilization [2]. A common SDN architecture comprises of
the SDN Controller (SDN-C) and SDN Forwarding Elements
(SDN-FEs). The SDN-FE stores forwarding entries using
local ternary content addressable memory (TCAM), which is
extremely expensive and power-hungry. Thus, the number of
forwarding entries installed, or the size of the forwarding table,
in the SDN-FEs is limited.

Nowadays, with the capabilities of fast packet forwarding
and flexible traffic engineering, multi-protocol label switching
(MPLS) [3] has been widely used in the core networks and
supported by OpenFlow version 1.2 or higher [4]. In MPLS-
based SDNs, each forwarding path is identified by a unique
label (forwarding entry) in each SDN-FE. According to the
analysis of [5], large entry usage will bring heavy burden to
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SDN-FEs, which will increase the forwarding table look-up
latency and decline the network scalability. Moreover, even in
small data centers comprising of several dozens of physical
servers, the number of different flows can easily grow to
several orders of magnitude above the number of SDN-FEs.
This implies that the number of forwarding entries in the SDN-
FE is very limited. Thus, this motivates the researchers to
design a control plane algorithm able to select the right set of
forwarding paths, such that the local constraints on the sizes of
the forwarding tables in SDN-FEs are satisfied and the global
objective (e.g., maximum flow, max-min fairness, maximum
concurrent flow) in the SDN-C is reached [6]–[8].

The traffic engineering problem in networks can be anal-
ogous to a multi-commodity flow problem and has been
addressed by many researchers. In [9], [10], algorithms are
proposed for the maximum flow problem, which asks for
the maximum total throughput of all commodities, in the
telecommunication networks and large IP networks, respec-
tively. In [11], the authors address how to dynamically reallo-
cate the multi-commodity flow such that all commodities are
served and the flow reallocation cost is minimized in SDNs.
However, none of the above works considers fairness among
commodities.

A number of works investigate the issue of fair bandwidth
allocation for a multi-commodity problem. In [12], [13],
algorithms are proposed for the multi-commodity flow problem
with max-min fairness (the minimum flow of a commodity are
maximized). Another line of researches consider completion
time for the data-parallel applications (e.g., MapReduce jobs).
More specifically, a job is finished until all the flows from
the sources are completely transferred to the destinations
and the completion time is determined by the slowest one
among all flows. Thus, several works aim to maximize the
minimum fraction of the flow (traffic rate) of a commodity to
its demand, which is known as the maximum concurrent flow
problem and widely studied [14]–[20]. In [21], the maximum
concurrent flow problem where the total flow through a node
are bounded is addressed. However, these algorithms for the
multi-commodity flow problem do not address the constraints
on the node path-degree.1 Thus, numerous algorithms that
address the node path-degree constraints are proposed for the
maximum flow problem [6], [7] and the maximum concurrent

1In MPLS-based SDNs, we have to install a label (forwarding entry) to
each SDN-FE of each forwarding path. And, the number of forwarding entries
installed in the SDN-FEs is limited. Therefore, we limit the maximum number
of paths that can go through a node (SDN-FE), and denote this constraint
by path-degree as the same as in [6], [8].



flow problem [8]. In [8], a randomized algorithm is proposed
to select the paths to route flow from a set of pre-determined
forwarding paths (e.g., shortest paths) under the circumstance
that the flow routed for a commodity is allowed to exceed its
demand (i.e., the constraints on the demand are not imposed).
However, selecting the forwarding paths without considering
the utilization of network resources (e.g. bandwidth and for-
warding table) might lead to poor performance. In addition,
allowing the flow routed for a commodity to exceed its
demand could over-allocate the network resources for some
commodities, which may lead to improper link bandwidth
allocation for the competing flows and thus deteriorate the
max-min goal.

In this paper, we are motivated to study the maximum
concurrent flow problem while ensuring the node path-degree
constraints and the demand constraints are satisfied, under
the circumstance that the set of forwarding paths is not
pre-determined, termed the bounded path-degree maximum
concurrent flow (BPMCF) problem. Our main contributions
are summarized as follows:

1) We introduce the BPMCF problem, which has never
been studied in the literature, and show the BPMCF
problem is NP-hard and intractable to devise any ap-
proximation algorithm (Section II).

2) We propose an algorithm for the BPMCF problem
(Section III). Precisely, we propose a novel method of
computing the reference of a path p, r(p), which is used
to evaluate each path obtained by Garg and Könemann’s
algorithm (a well-known algorithm for the maximum
concurrent problem without node path-degree constraints
and demand constraints) [18]. In particular, r(p) can well
indicate the worth in both keeping the minimum fraction
and satisfying the path-degree constraints. Then, with
the evaluated r(p), we can remove proper forwarding
paths obtained by GK algorithm to satisfy the node path-
degree constraints. Finally, we employ a linear program
to route flow on each selected path such that the demand
constraints are satisfied and the minimum fraction is
maximized.

3) We conduct computer simulations and experiments
on Global Environment for Network Innovations
(GENI) [22] testbed using the real-life traces for In-
ternet Service Provider (ISP) networks collected from
SNDlib [23], and the results show our algorithm outper-
forms the related work in [8] and some naive methods
(Section IV).

II. BOUNDED PATH-DEGREE MAXIMUM CONCURRENT
FLOW PROBLEM

We first demonstrate the scenario in Section II-A. Subse-
quently, we formally define the problem in Section II-B and
show its hardness in Section II-C.

A. The Scenario

Our system model follows the OpenFlow model. Consider a
network consisting of an SDN-C and a number of SDN-FEs,

where the number of forwarding entries is limited in each
SDN-FE and the bandwidth of each link between two SDN-
FEs is limited. There are several source-destination pairs. A
flow is transferred from the source node to the destination
node. In addition, each source-destination pair is associated
with a flow requirement (demand). Due to the benefits of
the multi-path routing for traffic engineering [24], the flow
between a source-destination pair may be split among different
paths. Since MPLS is employed, for each forwarding path,
we install a label (forwarding entry) to each SDN-FE of that
path. We also assume the SDN-C has the global information
of the network. The control plane algorithm is to decide the
forwarding paths and the flow on each chosen path for each
source-destination pair (up to its flow requirement) such that
the minimum fraction of the total flow between each source-
destination pair to its flow requirement is maximized.

B. The Problem

We define the problem based on the studied scenario in
Definition 1.

Definition 1. Given a (directed) network G = (V,E) with
link capacity ce ∈ R+ associated with each link e ∈ E and
node capacity bv ∈ Z+ associated with each node v ∈ V ,
and given a set of source-destination pairs K with maximum
demand dk ∈ R+ associated with each source-destination pair
k ∈ K, the Bounded Path-Degree Maximum Concurrent Flow
(BPMCF) problem asks for the minimum fraction λ ∈ [0, 1]
and the set of forwarding paths such that

1) for each source-destination pair k, the total flow between
the source (termed sk) and the destination (termed tk),
where tk 6= sk, is at least λ · dk and does not exceed dk
(demand constraints),

2) for each link e, the total flow through e does not exceed
ce (link capacity constraints),

3) for each node v, the number of forwarding paths going
through v does not exceed bv (node path-degree con-
straints), and

4) λ is maximized.

Let Pk be the set of enumerated forwarding paths of the
source-destination pair k, and P be P1 ∪ P2 ∪ · · · ∪ P|K|.
Moreover, let cp be the capacity of a path p in Pk, k ∈ K.
More specifically, cp = min{mine:e∈p{ce}, dk}. Thus, the
flow through a path p does not exceed cp. In addition, variable
x(p) denotes the fraction of the flow on path p to cp, and binary
variable y(p) denotes the path p is chose or not. The BPMCF
problem is formulated as a mixed integer program (1a – 1h).
Constraints in 1b ensure that, for each source-destination pair,
the fraction of the total flow to its demand are at least λ.
Constraints in 1c ensure that, for each source-destination pair,
the total flow are bounded by its demand. Constraints in 1d
(or 1e) ensure that the total flow (or the total number of flow
paths) through a link (or node) are bounded by its capacity.
Constraints in 1f and 1h ensure a flow is only routed on the
chosen path.



maximize λ (1a)

subject to
∑
p∈Pk

x(p)cp ≥ λ · dk, ∀k ∈ K (1b)∑
p∈Pk

x(p)cp ≤ dk, ∀k ∈ K (1c)∑
p:e∈p

x(p)cp ≤ ce, ∀e ∈ E (1d)∑
p:v∈p

y(p) ≤ bv, ∀v ∈ V (1e)

x(p) ≤ y(p), ∀p ∈ P (1f)
x(p) ∈ [0, 1] (1g)
y(p) ∈ {0, 1} (1h)

C. Hardness

We show the BPMCF problem is NP-hard and cannot be
approximated within any “reasonable” factor (unless P =
NP ) by demonstrating a polynomial-time reduction from the
node disjoint paths problem (Definition 2), an NP-complete
problem, in Theorem 1.

Definition 2. [25] Given an undirected graph G =
(V,E) and a set of source-destination pairs H =
{(s1, t1), (s2, t2), · · · , (s|H|, t|H|)} ⊆ V×V. The node disjoint
paths problem asks for a path ph for each source-destination
pair h such that path pi and path pj are node disjoint for every
i 6= j, i, j ∈ H .

Theorem 1. The BPMCF problem is NP-hard. More specifi-
cally, the BPMCF problem cannot be approximated within a
factor of α for any α > 0.

Proof. We first show that the BPMCF problem is NP-hard. For
every instance of the node disjoint paths problem, we construct
a corresponding instance of the BPMCF problem as follows:

1) V = V,
2) E =

{
(u, v), (v, u)|{u, v} ∈ E

}
,

3) ce = 1, ∀e ∈ E,
4) bv = 1, ∀v ∈ V ,
5) for each source-destination pair h in the instance of

node disjoint paths problem, we create a corresponding
source-destination pair k, where (sk, tk) = (sh, th) and
dk = 1.

Clearly, this instance can be constructed in polynomial time.
It is then suffices to show that there exists a set of node
disjoint paths for the set of source-destination pairs H in an
instance of the node disjoint paths problem if and only if the
minimum fraction λ of the corresponding instance constructed
is 1 (optimal value).

For the “only if” part, suppose that p1, p2, · · · , p|H| are the
node-disjoint paths for source-destination pairs 1, 2, · · · , |H|,
respectively. For each h in H , path ph = {sh =
v1, v2, v3, · · · , v|ph| = th} has consecutive undirected edges
{v1, v2}, {v2, v3}, · · · , {v|ph|−1, v|ph|}. Then, for each corre-
sponding source-destination pair k, let pk be a path with con-

secutive directed edges (v1, v2), (v2, v3), · · · , (v|ph|−1, v|ph|)
and the flow on pk be 1. It is easy to verify that the set of
paths {p1, p2, · · · , p|K|} is a feasible solution with λ = 1 to
the instance of the BPMCF problem. We omit the proof of the
“if” part due to its similarity with that for the “only if” part.

Then we show that the BPMCF problem cannot be approxi-
mated within a factor of α for any α > 0 unless P = NP . We
use the same way to construct the instance of our problem for
an instance of the node disjoint paths problem. It is suffices to
show an α-approximation algorithm A can be used to solve the
node disjoint paths problem, where α > 0. More specifically,
if the minimum fraction λ obtained by A in the instance
constructed is greater than 0, there exists a set of node disjoint
paths for H in the corresponding instance of node disjoint
paths problem, and otherwise there does not. We omit the proof
due to the similarity with that for the “if” part in the proof of
the hardness, and thus, complete the proof.

III. THE PROPOSED ALGORITHM

Since the BPMCF problem is intractable to devise any
approximation algorithm by Theorem 1, we propose a heuristic
algorithm for the BPMCF problem. Our idea is to extend Garg
and Könemann’s algorithm (GK algorithm) for the maximum
concurrent flow (MCF) problem in [18]. The MCF problem
is the same as the BPMCF problem except that the demand
constraints (i.e., the constraints in 1c) and the node path-degree
constraints (i.e., the constraints in 1e) are not imposed. We
notice that the set of paths PGK with (x, y, λ) obtained by
GK algorithm has a performance guarantee but may violate the
path-degree constraints and the demand constraints. Hence, our
goal is to make the obtained solution feasible while keeping
λ (the minimum fraction) as large as possible.

Clearly, we could make the obtained solution satisfy the
path-degree constraints by removing some paths from PGK
So, the basic idea is to select a subset, Pours, of PGK to route
the flow such that the path-degree constraints are satisfied and
λ is not significantly affected. Recall that x(p) denotes the
fraction of the flow on path p to cp. Intuitively, selecting the
paths p with great x(p) to Pours seems to be able to keep λ.
However, since the GK algorithm does not address the path-
degree constraints, selecting the path with great x(p) to Pours
has not much help for satisfying the path-degree constraints.
Thus, we need a better reference of each path. Obviously, a
proper reference of each path p, r(p), has to embody in both
keeping λ and satisfying the path-degree constraints. In the
following, we present our approach consisting of three steps.
First, for each path p in PGK , we compute a reference r(p).
Then, we select a subset, Pours, of PGK based on the path
reference. Finally, we determine the flow on each path in Pours
such that the demand constraints are satisfied and the minimum
fraction is maximized.

Path Reference Computation: To obtain a proper reference
r(p) of each path p in PGK , we employ the following linear
program, LPPRC . Let fp = x(p) · cp denote the flow on
a path p in PGK . In LPPRC , the objective function (2a)
and constraints in (2b) account for the goal to maximize



mink∈K{
∑

p∈Pk∩PGK r(p)fp

dk
} and are to assign proper r(p) to

maximize λ̃ (in order to keep the minimum fraction λ obtained
by GK algorithm). Constraints in (2c) ensure that the total r(p)
of the paths p through a node v is bounded by bv and are to
assign proper r(p) such that the node path-degree constraints
are satisfied. Thus, r(p) can well indicate in both keeping λ
and satisfying the path-degree constraints.

maximize λ̃ (2a)

subject to
∑

p∈Pk∩PGK

r(p)fp ≥ λ̃ · dk, ∀k ∈ K (2b)

∑
p:v∈p

r(p) ≤ bv, ∀v ∈ V (2c)

r(p) ∈ [0, 1] (2d)

Path Selection: After we have r(p) for each p in PGK , we
can just select the paths p with great r(p) to Pours. However,
recall that our goal is to maximize the minimum fraction. So,
we need to take the goal into account. We say that a path p
is feasible if the node path-degree constraints are not violated
when p is selected into Pours. The path selection proceeds in
iterations. In each iteration, we select a feasible path p with
the greatest r(p) into Pours for the source-destination pair k
which has the minimum

∑
p∈Pk∩Pours r(p)fp

dk
(ties are broken

arbitrarily). The source-destination pair k becomes frozen if
there is no feasible path between them. The path selection
ends when all source-destination pairs are frozen.

Flow Optimization: When the path selection is done, it
is observed that the capacities of the links on the unselected
paths (i.e., PGK \Pours) can be utilized by the selected paths
going through that links. Thus, we aim to route the flows on
paths in Pours such that the demand constraints are satisfied
and the minimum fraction is maximized. Note that the path-
degree constraint of each node is not violated even if we route
the flow on all paths in Pours. Thus, our current problem can
be formulated as the following linear program, LPFO.

maximize λ̂ (3a)

subject to
∑

p∈Pk∩Pours

x̂(p)cp ≥ λ̂ · dk, ∀k ∈ K (3b)∑
p:e∈p

x̂(p)cp ≤ c(e), ∀e ∈ E (3c)∑
p∈Pk∩Pours

x̂(p)cp ≤ dk, ∀k ∈ K (3d)

x̂(p) ∈ [0, 1] (3e)

Note that both the number of variables and the number of
constraints are polynomial in LPPRC and LPFO. Thus, both
LPPRC and LPFO can be solved in polynomial time using a
linear program solver. The proposed algorithm for the BPMCF
problem is described in Algorithm 1. An instance of the
BPMCF problem and a solution generated by Algorithm 1 is
shown in Fig. 1. The path selection proceeds in iterations until
each source-destination pair is frozen (line 4). In iteration 1,
kmin is set to (s1, t1) by random since

∑
p∈P1∩Pours r(p)fp

d1
=

Algorithm 1: The Algorithm for BPMCF Problem
Input : An infeasible solution PGK , x, y, λ obtained by GK

algorithm
1 Obtain r(p) of each path p in PGK by solving LPPRC

using a linear program solver
2 Pours ← ∅
3 Kfrozen ← ∅
4 while |K| > |Kfrozen| do
5 kmin ← the source-destination pair with the minimum∑

p∈Pk∩Pours r(p)fp

dk
6 if All paths of kmin are infeasible then
7 Kfrozen ← Kfrozen ∪ {kmin} and continue

8 pmax ← the feasible path in PGK with the greatest r(p)
between kmin

9 Pours ← Pours ∪ {pmax}
10 PGK ← PGK \ {pmax}

11 Obtain x̂(p) of each path p in Pours and λ̂ by solving
LPFO using a linear program solver

12 return x̂,Pours, λ̂∑
p∈P2∩Pours r(p)fp

d2
= 0 (line 5), and pmax is set to p1 since

path p1 has the greatest r(p) among all feasible paths between
(s1, t1) (line 8). Thus, p1 is added to Pours in phase 1 (line
9). Similarly, paths p2, p3, and p4 are added to Pours in
phases 2, 3, and 4, respectively. After Pours is obtained,
x̂(p1) = x̂(p3) = 1, x̂(p2) = 0.286, x̂(p4) = 0, and λ̂ = 0.286
are obtained by solving LPFO (line 11).

IV. NUMERICAL RESULTS

In this section, we conduct computer simulations to evaluate
the performance of Algorithm 1. In addition, we also conduct
experiments on Global Environment for Network Innovations
(GENI) [22] testbed. In both simulations and experiments,
we use the real-life traces for Internet Service Provider (ISP)
networks collected from SNDlib [23].

A. The Settings

Network Instances: The network instances were obtained
from SNDlib. We used eight traces, including four small-
scale ones (abilene, atlanta, newyork, polska) and four large-
scale ones (india35, cost266, pioro40, germany50). Due to
the computation limit, we only use four small-scale traces on
GENI. Each trace contains the topology of the network, the
capacity of each link, and the source-destination pairs with
maximum demands. Since the capacity of each switch (bv) is
unavailable, bv was set to m · |K| where m ∈ [0.5, 1].

Comparison Methods: We compared our algorithm with
GK algorithm followed by one of three greedy strategies (de-
noted by GREEDY-1, GREEDY-2, and GREEDY-3) to remove
the violation of the node path-degree constraints. GREEDY-1
iteratively removes the forwarding path p with minimum 4λ(p)

v(p)

from PGK until the node path-degree constraints are satisfied,
where 4λ(p) denotes the decrease on the value of λ as p is
removed, and v(p) denotes the number of nodes on p which
violates the node path-degree constraints. Similar to GREEDY-
1, GREEDY-2 and GREEDY-3 remove the flow paths p
with minimum 4λ(p) and maximum v(p), respectively. For
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Fig. 1. Example of generating a solution by Algorithm 1. (a) The network G with two source-destination pairs, where d1 = 35, d2 = 5 and the capacity
of a link (or node) is shown in the parenthesis. (b) The solution obtained by GK algorithm for G, where p1 = (3, 5), p3 = (3, 6, 5), p4 = (3, 2, 6, 5),
and p5 = (3, 2, 1, 4, 5) are selected to route the flows between (s1, t1) and p2 = (4, 1) is selected to route the flow between (s2, t2). For each path p in
PGK , x(p) is shown in the parenthesis. (c) (or (d)) shows PGK (or Pours), where r(p) (or x̂(p)) obtained by solving LPPRC (or LPFO) is shown in
the parenthesis.

GREEDY-1, GREEDY-2, GREEDY-3 and Algorithm 1, the
parameter ε in GK algorithm is set to 0.5. In addition, we
also consider the randomized algorithm (denoted by RAN)
proposed in [8]. Since the set of forwarding paths needs to be
pre-determined, we used Yen’s algorithm [26], as suggested
by the authors, to generate k-shortest paths (k = 3, 5) for
each source-destination pair. For RAN, we generated 100
solutions and selected the solution with the greatest minimum
fraction. For the solution obtained by GREEDY-1, GREEDY-2,
GREEDY-3 and RAN, we scaled down the flow on each path
between a source-destination pair k by the violation factor if
the flow between the source-destination pair k exceeded its
maximum demand.

GENI testbed: We employ resources including a controller
and OpenFlow-enabled switches to emulate SDN environment
on GENI. In addition, we used Iperf [27] tool to generate
UDP traffic between each source-destination pair and each
experiment lasted for five minutes.

Metrics: We evaluated the minimum fraction and the total
throughput of the solution obtained by Algorithm 1, GREEDY-
1, GREEDY-2, GREEDY-3 and RAN. In addition, we studied
the switch load distribution, where the switch load is the total
number of the forwarding entries installed on a switch divided
by its switch capability.

B. The Results

Minimum fraction (our goal) and total throughput:
Fig. 2 shows the results for the impact of the switch capacity
on the minimum fraction through computer simulations. In
general, Algorithm 1 outperforms GREEDY-1, GREEDY-2,
GREEDY-3 and RAN in all traces. Compared to GREEDY-
1, GREEDY-2, and GREEDY-3, Algorithm 1 has a greater
minimum fraction since our algorithm removes proper paths
from PGK to satisfy the path-degree constraints based on the
reference of path p, r(p), which indicates the worth of path p
in both keeping the minimum fraction and satisfying the path-
degree constraints. For RAN, the minimum fraction is 0 in all
traces except for newyork and india35. This is because there
are some source-destination pairs with mice demands. More
specifically, for these source-destination pairs, the probability
of selecting a pre-determined path as the forwarding path is
very small, resulting in a high probability that the fraction
of the flow to the demand is 0. It is observed that all
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Fig. 2. The impact of the switch capacity on the minimum fraction through
computer simulations, where the switch capacity is set to m · |K|.
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Fig. 3. The impact of the switch capacity on the minimum fraction on GENI,
where the switch capacity is set to m · |K|.

methods except for GREEDY-3 generate optimal solutions
(λ = 1) in newyork and india35. This observation results
from that all source-destination pairs are fully served due
to the abundant network resources in newyork and india35.
Fig. 3 shows the results for the impact of the switch capacity
on the minimum fraction through experiments on GENI. As
anticipated, the results through experiments on GENI are sim-
ilar to those through computer simulations, and the minimum
fraction of each algorithm on GENI is slightly smaller than
that in computer simulations due to the packet loss in the
real machines. Fig. 4 and Fig. 5 show that our algorithm
outperforms or ties the compared methods in terms of the
total throughput. Compared to GREEDY-1, GREEDY-2, and
GREEDY-3, Algorithm 1 has a greater total throughput since
our algorithm employs the step of flow optimization to re-
utilize the link capacity occupied by the forwarding paths in
PGK unselected by our algorithm. It can be seen that for RAN,
the total throughput is 0 in all traces except for newyork and
india35. This is because RAN employs a linear program solver
to perform flow optimization while the linear program solver
tends to assign zero flow to all selected forwarding paths as
the object value (i.e., the value of the minimum fraction) is
0 due to that no forwarding path is selected for some source-
destination pairs with mice demands.

Switch load distribution: Fig. 6 shows the cumulative
percentage of switches of switch load from 0 to 100% as
bv = |K|. Our algorithm outperforms GREEDY-1, GREEDY-
2, and GREEDY-3 in all traces, and outperforms RAN in
newyork and india35. This is because our algorithm employs
less forwarding paths to route the flow for a source-destination
pair due to that our algorithm selects the forwarding path based
on the evaluated r(p) which can well indicate the worth of
path p in both keeping the minimum fraction and satisfying
the path-degree constraints. For RAN, in all traces except for
newyork and india35, the load of each switch is 0 since the

●�✁✂✄☎✆✝

❘✞✟ ✠✡☛☞✌

✍✎✏✑✒✓✔✕

✖✗✘ ✙✚✛✜✢

✣✤✥✦✧★✩✪

❆✫✬✭ ✮

✥

�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✵✍✎ ✏✑✒ ✓✔✕ ✖✗✘ ✙✚✛ ✶✜✢
❚
✣
✤✦
✧
★
✩
✪✫
✬
✭
✮
✯
✰
✱
✲✳
✴
✷
✸✹

❙✺✻✼✽✾ ✿❀❁❂❃❄❅❆ ❇❈❉

❛❊❋●❍■❏

✥

�✁✂

✄☎✆

✝✞✟

✠✡☛

☞✌✍✎

✏✑✒✓

✵✔✕ ✖✗✘ ✙✚✛ ✜✢✣ ✤✦✧ ✶★✩
❚
✪
✫✬
✭
✮
✯
✰✱
✲
✳
✴
✷
✸
✹
✺✻
✼
✽
✾✿

❙❀❁❂❃❄ ❅❆❇❈❉❊❋● ❍■❏

❛❑▲▼◆❖P

✥�✁
✂✄☎
✆✝✞
✟✠✡
☛☞✌
✍✎✏
✑✒✓
✔✕✖
✗✘✙

✵✚✛ ✜✢✣ ✤✦✧ ★✩✪ ✫✬✭ ✶✮✯
❚
✰
✱✲
✳
✴
✷
✸✹
✺
✻
✼
✽
✾
✿
❀❁
❂
❃
❄❅

❙❆❇❈❉❊ ❋●❍■❏❑▲▼ ◆❖P

♥◗❘❯❱❲❳

✥
�✁
✂✄
☎✆
✝✞

✟✠✡
☛☞✌
✍✎✏
✑✒✓

✵✔✕ ✖✗✘ ✙✚✛ ✜✢✣ ✤✦✧ ✶★✩
❚
✪
✫✬
✭
✮
✯
✰✱
✲
✳
✴
✷
✸
✹
✺✻
✼
✽
✾✿

❙❀❁❂❃❄ ❅❆❇❈❉❊❋● ❍■❏

♣❑▲▼◆❖

✥

�✁✂✄

☎✆✝

✞✟✠✡

☛☞✌

✍✎✏✑

✒✓✔

✵✕✖ ✗✘✙ ✚✛✜ ✢✣✤ ✦✧★ ✶✩✪
❚
✫
✬✭
✮
✯
✰
✱✲
✳
✴
✷
✸
✹
✺
✻✼
✽
✾
✿❀

❙❁❂❃❄❅ ❆❇❈❉❊❋●❍ ■❏❑

✐▲▼◆❖P◗

✥
�✁
✂✄
☎✆
✝✞

✟✠✡
☛☞✌
✍✎✏

✵✑✒ ✓✔✕ ✖✗✘ ✙✚✛ ✜✢✣ ✶✤✦
❚
✧
★✩
✪
✫
✬
✭✮
✯
✰
✱
✲
✳
✴
✷✸
✹
✺
✻✼

❙✽✾✿❀❁ ❂❃❄❅❆❇❈❉ ❊❋●

❝❍■❏❑▲▼

✥

�✁✂

✄

☎✆✝

✞

✟✠✡

✵☛☞ ✌✍✎ ✏✑✒ ✓✔✕ ✖✗✘ ✶✙✚
❚
✛
✜✢
✣
✤
✦
✧★
✩
✪
✫
✬
✭
✮
✯✰
✱
✲
✳✴

❙✷✸✹✺✻ ✼✽✾✿❀❁❂❃ ❄❅❆

♣❇❈❉❊❋●

✥
�✁✂
✄☎✆
✝✞✟
✠✡☛
☞✌✍
✎✏✑
✒✓✔
✕✖✗

✵✘✙ ✚✛✜ ✢✣✤ ✦✧★ ✩✪✫ ✶✬✭
❚
✮
✯✰
✱
✲
✳
✴✷
✸
✹
✺
✻
✼
✽
✾✿
❀
❁
❂❃

❙❄❅❆❇❈ ❉❊❋●❍■❏❑ ▲▼◆

❣❖P◗❘❯❱❲❳

Fig. 4. The impact of the switch capacity on the total throughput through
computer simulations, where the switch capacity is set to m · |K|.

total throughput is 0 (as can be seen in Fig. 4).

V. CONCLUSION

In this paper, we studied the bounded path-degree maximum
concurrent flow problem, under the circumstance that the
routing path set is not pre-determined. The problem asks for
the paths and the flow on each chosen path for each source-
destination pair (up to its demand) such that the minimum
fraction of the total flow between each source-destination pair
to its demand is maximized, while ensuring the link capacity
and node path-degree are satisfied. To tackle this problem,
through formulating and solving linear programs, we first
compute the reference of each forwarding path obtained by
GK algorithm (a well-known algorithm for the maximum
concurrent problem without node path-degree and demand
constraints) to decide whether to remove the forwarding path,
and then optimize the flow of each selected path, where
the reference of a forwarding path shows the worth in both
keeping the minimum fraction and satisfying the path-degree
constraints. Computer simulations and experiments results on
GENI testbed using the real-life traces collected from SNDlib
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Fig. 5. The impact of the switch capacity on the total throughput on GENI,
where the switch capacity is set to m · |K|.
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Fig. 6. The cumulative percentage of switches of switch load.

showed that our algorithm outperforms naive methods and an
existing algorithm that assumes the forwarding path set is pre-
determined and does not address the demand constraints.
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